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Abstract. We present our results of a numerical investigation of the behaviour of a system of two solitons in
the (2+1) dimensional CP 1 model on a torus. Defined by the elliptic function of Weierstrass, and working
in the Skyrme version of the model, the soliton lumps exhibit splitting, scattering at right angles and
motion reversal in the various configurations considered. The work is restricted to systems with no initial
velocity.

PACS. 11.10.-z Field theory – 02.60.-x Numerical approximation and analysis – 03.50.-z Classical field
theories

1 Introduction

Physics in (2+1) dimensions is an area of much active re-
search, covering topics that include Heisenberg ferromag-
nets, the quantum Hall effect, superconductivity, nematic
crystals, topological fluids, vortices and solitary waves [1].
Most of these systems are non-linear. In their mathe-
matical description the well-known family of sigma mod-
els plays a starring role. One of the simplest models in
(2+1) dimensions which is both Lorentz covariant and
which possesses soliton solutions is the CP 1 or O(3) sigma
model. Such solutions are realisations of harmonic maps,
by itself a long-established area of research in pure mathe-
matics. However, analytical CP 1 solutions have only been
found in the static (2+0) case; their dynamics is stud-
ied using numerical methods and/or other approximation
techniques.

Sigma models are also useful as low dimensional ana-
logues of important field theories in higher dimensions. In
fact, the sigma CP 1 model in two dimensional space ex-
hibits conformal invariance, spontaneous symmetry break-
ing, asymptotic freedom and topological solitons, prop-
erties that resemble some of those present in a number
of forefront field theories in (3+1) dimensions. Amongst
the latter we have the Skyrme model of nuclear physics
[2]. Initially proposed as a theory of strong interactions
between hadrons, it can now be regarded as a low en-
ergy limit of quantum chromodynamics [3]. The Skyrme
scheme assumes that its topological solutions (skyrmions)
correspond, at a classical level, to ground states of light
nuclei with the topological charge (Brouwer degree) rep-
resenting the baryon number. Of course, to compare with
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the properties of real (physical) nuclei one has to add to
the classical results various quantum corrections.

Planar analogues of the Skyrme model involve the
addition of some extra terms to the original CP 1 La-
grangian in order to stabilise the field solutions –the ‘baby
skyrmions’. Without them, the invariance of the pure,
planar CP 1 theory under dilation transformations would
lead to the instability of its soliton-lumps. In the tradi-
tional approach, where the solitons are harmonic maps
<2 ∪ {∞} ≈ S2 7→ S2, one adds two terms: A Skyrme-
like term which controls the shrinking of the lumps and a
potential-like term which controls their expansion. Prop-
erly implemented, this procedure yields stable solitons as
confirmed by numerical simulations [4].

Lately, attention has also being paid to the CP 1 model
on a torus T2 where the solitons are maps T2 7→ S2; this
approach amounts to imposing periodic boundary condi-
tions on the system. A characteristics of this model is that
there are no solitons of topological charge one, a feature
arising because genus(T2) = 1.

Recent investigations have unveiled a rich diversity of
phenomena in the toroidal model that goes beyond the
two-lump and annular structures one might expect by
analogy with the model on <2 [5–7]. This article continues
our earlier studies of CP 1 skyrmions that were found to
undergo splitting when defined through the elliptic func-
tion of Weiestrass [6].

In the following section we define the toroidal CP 1

model. The numerical procedure is explained in Section 3.
Section 4 reviews previous findings and presents our new
results. The paper closes with Section 5, with some con-
cluding remarks and suggestions for future research.
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2 The CP1 model on a torus

Our CP 1 skyrmion model is defined by the Lagrangian
density

L =
|Wt|2 − |Wx|2 − 2|Wy|2

(1 + |W |2)2

− 2θ1
(W̄tWy −WtW̄y)2 + (W̄tWx −WtW̄x)2

(1 + |W |2)4

+ 2θ1
(W̄xWy −WxW̄y)2

(1 + |W |2)4
, x, y ∈ T2, (1)

which is the original CP 1 Lagrangian modified by the ad-
dition of a Skyrme, θ1-term (θ1 ∈ <). We adopt the nota-
tionWt = ∂tW,Wx = ∂xW,Wy = ∂yW for the derivatives;
the bar denotes complex conjugation.

In order to obtain stable lumps on the torus it is suf-
ficient to supplement the pure CP 1 Lagrangian with a
θ1 term as shown in equation (1). This is also the case in
the (3+1) dimensional Skyrme theory. As remarked in the
introduction, in order to stabilise the lumps in the tradi-
tional CP 1 model on <2 we have to add, other than the
θ1 term, also a potential-like term.

Also it is worth mentioning that on T2 one no longer
has the problem confronted in the extended plane, whose
non-compactness brings about formal difficulties in defin-
ing the metric on the moduli space of static soliton solu-
tions [7].

For the CP 1 model to be defined on a torus we re-
quire the complex field W to obey the periodic boundary
conditions

W [z + (m+ in)L] = W (z), ∀t, (2)

where m,n = 0, 1, 2, ... and L is the size of the torus.
The static solitons (instantons) are elliptic functions which
may be written as

W = λ℘(z − a) + b, λ, a, b ∈ Z, (3)

where ℘ denotes the elliptic function of Weierstrass. The
partial fraction representation of ℘ reads

℘(u) = u−2 −
∞∑
−∞
{[u− (m+ in)L]−2 − [(m+ in)L]−2},

(4)

the summation being over the integers m,n excluding the
combination m = n = 0. A comprehensive treatment of
elliptic functions can be found in [8,9].

The function (4) is of the second order, hence (3) rep-
resents solitons of topological charge 2. A particularity of
our instantons is that they have no analytic representa-
tive of charge one (the model on <2 has representatives in
all topological classes). It is important to note that (3) is
an approximate solution of the model (1), and it becomes
an exact static solution in the O(3) limit (θ1=0) where it
satisfies the ensuing field equation. This means that the
CP 1 lumps should evolve only for θ1 6= 0.

Our first investigations [5] of periodic solitons involved
the use of the Weierstrass pseudo-elliptic function σ. Then
W was taken to be given by:

W = λ
κ∏
j=1

σ(z − cj)
σ(z − dj)

,
κ∑
j=1

cj =
κ∑
j=1

dj , (5)

where the accompanying selection rule between the zeroes
(cj) and poles (dj) guarantees that W is elliptic.

Observe that when κ = 1 in (5) the constraint between
the zeroes and the poles must be relaxed lest a trivial con-
figuration W is desired. Although this procedure renders
W pseudo-periodic, starting with such a field a periodic
ansatz of topological charge one was constructed in [5].
This gave a field which was an approximate solution of
the equations of motion for θ1 6= 0, but became singular
as θ1 → 0.

The power series for σ on a square torus may be cast
into the form

σ(u) =
∞∑
j=0

Gju
4j+1, Gj ∈ <. (6)

With the help of equation (4) the coefficients Gj can be
calculated by expanding

σ(u) =
∫ u

0

[℘(v)− 1/v2].

In general, the coefficients are written in terms of the
so-called invariants g2(L) and g3(L). However, square
boundary conditions effectively set g3 = 0, the lemnis-
cate case, leading to a relatively simple expression of the
form (6).

Let us also add that we can re-express the ℘ function
through σ via the formula

℘(u) = − d2

du2
ln[σ(u)], (7)

and then perform the computation of σ with the same
numerical subroutine which was used in reference [5].

Note that each factor σ(u)/σ(v) in the field (5) can be
used to represent a single soliton, providing a setting to
studying more or less independent lumps in all topologi-
cal classes. Solitons in the σ-picture may, for example, be
boosted independently. On the other hand, through equa-
tion (3) we can only have solitons of even topological index
because ℘ is itself an elliptic function of order two. Lumps
in the ℘-picture are less independent than their siblings in
the σ-formulation, for changing the values of the param-
eters in (3) always affects both lumps. Strictly speaking,
however, truly independent solitons can only be obtained
in the asymptotic regime of large lump separation, which
really never happens on a compact manifold [10].

Now let us display some useful relations satisfied by
the ℘ function, relations which follow from (4). They are:

℘(−u) = ℘(u), ℘(iu) = −℘(u), ℘(ū) = ℘(u). (8)
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Moreover, there exists a useful algebraic relation between
℘ and d℘/du on a square torus which reads

[
d℘(u)

du
]2 = 4℘(u)[℘(u)2 − ℘(L/2)]. (9)

It can be deduced from the equations (8) and (9) that
the function ℘ is purely imaginary on the diagonals bi-
secting the fundamental cell and real on the central cross
and on the boundary of the cell:

℘ =


imaginary: on central diagonals;

real: on central cross and boundary.
(10)

The static energy density associated with the field (3)
can be read-off from the Lagrangian density (1). Using
formula (9) we may write

E = e(1 + 4θ1e),

e = 8λ2 |℘(z − a)||℘2(z − a)− ℘2(L/2)|
[1 + |λ℘(z − a) + b|2]2

· (11)

Pictures of E reveal a distribution of lumps localised in
space. The parameter λ is related to the size of the lumps,
b determines their mutual separation and the parameter a
merely shifts the system as a whole on the torus. Through-
out our simulations we have chosen the values

λ = (1, 0), a = (2.025, 2.05), θ1 = 0.001 (or zero),

and studied different configurations by varying b.

3 Basic numerical set up

We have taken fields of the form (3) as the initial condi-
tions for our time evolution, studied numerically. Since the
field W may become arbitrarily large, we have preferred
to run our simulations in the φ-formulation of the model.
Its field equation follows from the Lagrangian density (1)
with the help of the stereographic projection

φ = (
W + W̄

|W |2 + 1︸ ︷︷ ︸
φ1

, i
−W + W̄

|W |2 + 1︸ ︷︷ ︸
φ2

,
|W |2 − 1
|W |2 + 1

)︸ ︷︷ ︸
φ3

, (12)

with the real scalar field φ satisfying φ · φ = 1. One has

0 = (∂µ∂µ − φ · ∂µ∂µφ)φ+ 2θ1[∂µ∂µφ(∂νφ · ∂νφ)
+ ∂νφ(∂µ∂νφ · ∂µφ)− ∂ν∂µφ(∂νφ · ∂µφ
− ∂µφ(∂ν∂νφ · ∂µφ) + (∂µφ · ∂µφ)(∂νφ · ∂νφ)φ
− (∂µφ · ∂νφ)(∂µφ · ∂νφ)φ], (13)

where µ, ν = 0, 1, 2 are the Lorentz indices; as usual we
have t, x, y = x0, x1, x2.

We compute the series (6) up to G5, the coefficients
Gj being in our case negligibly small for j > 5:

G0 = 1
G1 = −0.7878030
G2 = −0.221654845
G3 = 9.36193× 10−3

G4 = 7.20830× 10−5

G5 = 2.37710× 10−5


.

We have employed the fourth-order Runge-Kutta
method and approximated the spatial derivatives by fi-
nite differences. The Laplacian has been evaluated using
the standard nine-point formula and, to further check our
results, a 13-point recipe has also been used. Respectively,
the Laplacians are:

∇2 =

1 4 1
4 −20 4
1 4 1


6× a2

,

∇2 =


−1

1 12 1
−1 12 −48 12 −1

1 12 1
−1


10× a2

·

The discrete model has been evolved on a nx × ny =
200 × 200 periodic lattice with spatial and time steps
δx=δy = 0.02 and δt = 0.005, respectively. The vertices of
the fundamental lattice we have used for our simulations
were at

(0, 0), (0, L), (L,L), (L, 0), L = nx × δx = 4. (14)

Unavoidable round-off errors have gradually shifted
the fields away from the constraint φ·φ = 1. So we rescale

φ→ φ/
√
φ · φ

every few iterations. Each time, just before the rescaling
operation, we evaluate the quantity µ ≡ φ ·φ− 1 at each
lattice point. Treating the maximum of the absolute value
of µ as a measure of the numerical errors, we find that
max|µ| ≈ 10−8. This magnitude is useful as a guide to
determine how reliable a given numerical result is. Usage
of an unsound numerical procedure in the Runge-Kutta
evolution shows itself as a rapid growth of max|µ|; this
also occurs, for instance, in the limit θ1 → 0 when the
unstable energy lumps become infinitely spiky.

4 Results

In reference [6] we considered two cases: b = (0, 0) and
b = (1, 0). For b = (0, 0) one has a most evenly spread
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Fig. 1. Energy density configurations at t = 0 and the evo-
lution of the maximum Emax. Above we see the special case
featuring four lumps [b = (0, 0)] and the more common situa-
tion with a pair of lumps [b = (1, 0)]. The evolution of Emax

is illustrated bellow, both for the Skyrme and pure O(3) case.
The instability of the latter is manifest by the lumps shrinking
non-stoppingly.

energy distribution. Notably, this homotopy-two class con-
figuration exhibits four lumps (rather than two) sitting on
the central diagonals of the basic grid (14). (See the top-
left graph of Fig. 1.) When evolved from rest in the Skyrme
scheme, this quartet has moved along the diagonals under
the action of a net repulsive force. They have evolved in
a manner that resembled a scattering at right angles as
illustrated in upper half of Figure 2. No splitting has been
observed.

The state b = (1, 0) corresponds to a couple of lumps
placed along the coordinate axes as seen in Figure 1 (top-
right). This is certainly a more familiar picture for solitons
belonging to a charge-two topological sector. Unfamiliar,
though, is their novel dynamics: starting from rest after a
while each soliton splits into two lumps. The split is in the
direction perpendicular to the line joining the solitons. As
time goes by, the offspring skyrmions glue back together,
split again and so forth. This is depicted in the lower part
of Figure 2 and is the splitting phenomenon described in
the introduction. The time at which the lumps begin to
split is t ≈ 7.

The lower half of Figure 1 shows plots of Emax vs. t for
the above cases, including the unstable O(3) case. In the
latter, as expected, the lumps do not move at all (let alone
split) with the passing of time – as long as the initial speed
is zero. This is in accordance with our expectations, for,
as we recall, the field (4) is a static solution of the pure
O(3) model.

Note that in general b = (α, 0) corresponds to soli-
tons initially located on the central cross of the grid. If
α > 0 (α < 0) the lumps lie on the vertical (horizontal)
axis. Our qualitative results are unaffected by reasonable

0 1 2 3 4
0

1

2

3

4

x
y

Case b=(1,0)

d
e

f
g

ha

c

b

0 1 2 3 4
0

1

2

3

4

x

y

Case b=(0,0) Total energy density at t=51
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Fig. 2. Above: Skyrmion for the exceptionally symmetric case
b = (0, 0). The four lumps stay on the diagonals and move
towards the corners and coalesce. They break-off again and
proceed back to the centre of the lattice at t = 51. Below: The
b = (1, 0) skyrmions split each in two lumps that transit com-
plicated paths; the labels a−h refer to one of the ‘half-lumps’.
The t = 30 picture features the situation shortly after the ‘frac-
tional’ lumps reunite at d (and at its symmetrical point) and
begin to travel centrewards.

values of α. In connection with these configurations it is
interesting to consider the case where the simulations run
in the Skyrme format up to t = t0, after which they evolve
with θ1 = 0. In other words, we perform the simulations
with a Skyrme field as the initial condition for the O(3)
evolution. Since the splitting forces act only when θ1 6= 0,
we expect that the larger t0 is the sooner the solitons will
begin to divide up.

Let us analise the situation arising from b = (−1, 0) ,
which positions the lumps along the horizontal axis.
Figure 3 illustrates the evolution of the system for the
sample cases t0 = 1.3, 1.5. We find that after splitting the
extended structures reunite but eventually break up for
good. In agreement with our estimates, for t0 = 1.3 the
system splits later than it does for t0 = 1.5. Also appar-
ent is that the lumps show a stronger tendency to glue
back in for t0 = 1.3. We may now compare these plots
with Figure 4, which exhibits the splitting situation for
b = (−1, 0) in the limit t0 = ∞, i.e., when the routine
evolves with the Skyrme term on at all times.

The previous diagrams suggest that a t0 might exist
for which the lumps would come back together without
further division. After some trial and error we have found
that such critical time is approximately t0 ≈ 1.25. The
plots presented in Figure 5 show that the forces brought
about by the skyrmionic initial conditions are just enough
to set the solitons oscillating in a break-up-join-up fash-
ion. The skyrmions eventually settle together and stay
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Fig. 3. The CP 1 solitons b = (−1, 0) are run with θ1 6= 0
(Skyrme format) up to t = t0, at which time θ1 is set to zero
(pure format). As expected, the lumps divide up more readily
for larger t0. The change in the vertical coordinate of Emax

as time goes by, and the trajectory plots for the two cases
t0 = 1.3, 1.5 are shown.
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Fig. 4. Featuring the division of solitons for b = (−1, 0) as in
Figure 3, but with the Skyrme term on at all times.

that way for as long as the numerical procedure can be
trusted: In the pure format Emax shrinks indefinitely as
usual although it takes quite a while for the system to
blow up (t ≈ 100). This soliton is almost a static solution
of the model.

Let us point out that when defined via equation (5)
the periodic chunks of energy were found not move at all
when v0 = 0, neither in the pure case nor in the Skyrme
case [5]. Such result is rather unexpected for skyrmions,
for they are only approximate solutions of the field equa-
tion. Therefore, solitons obeying (2) look sensitive to the
choice of function describing them. Not so on <2, where
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Fig. 5. For the critical time t0 ≈ 1.25 the energy lumps of
Figure 3 can be forced back together.
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Fig. 6. Energy distribution, equation (11), for b = (0, 1). The
extended structures sit along the main diagonals of the lattice.
Starting off from rest, these entities attract each other, collide
at the centre of the grid and scatter at right angles with respect
to the initial direction of motion. (See Fig. 7.)

the behaviour of the solitons is qualitatively the same for
all the choices.

Let us now study b = (0, 1) . For this value the en-
ergy distribution (11) associated with (3) has the form of
two lumps placed on a bisecting diagonal of the elemen-
tary grid (Fig. 6). Our numerical simulations show that
the skyrmions attract each other and collide at the centre
of the grid. They coalesce indistinguishably for a moment
and then re-emerge perpendicularly to the initial line of
approach, scattering off at 90◦. Afterwards they continue
towards the corners (which are the same point in a peri-
odic set-up like ours) where they again scatter off at 90◦.
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Coalescing skyrmions at t=6 The state at t=7

 
t=18.5 t=22

Fig. 7. The solitons of picture 6 collide at the centre (t = 6)
and scatter off at right angles (t = 7). A similar event occurs
at the corners (t = 18.5), after which the solitons proceed back
to the centre. Such scatterings take place time and again, in
periodic cycles. No splitting is detected.

These events are depicted in Figures 7 and 8; the corre-
sponding Emax(t) diagram is the Skyrme curve shown in
the lower half of Figure 9. Such multi-scattering process
goes on indefinitely, and no splitting is observed.

We have also evolved the b = (0, 1) case with θ1 = 0.
This time the energy chunks have not moved at all with
the passing of time until they have become too narrow
and the numerical procedure has broken down (see Fig. 9).
The shrinking of solitons and the problem of singularity
formation in this model was predicted in [7], using the
geodesic approximation.

Next we consider b = (1, 1) . Here we have a pair of
lumps initially situated at some almost random points,
neither on the central cross nor on the central diagonals of
the lattice. Figures 10 and 11 reveal an interesting evolu-
tion for these skyrmions. As time elapses they move along
the flat torus along the x-axis, disappearing/re-appearing
through the lateral edges of the basic cell (14) in a contin-
uous, periodic motion. For instance, the skyrmion at the
upper (lower) half of the grid journeys towards decreas-
ing (increasing) x whilst keeping its y coordinate roughly
constant. The lump disappears into the line x = 0 (x = 4)
re-emerging from the opposite side x = 4 (x = 0). By
imagining the flat torus as the product manifold of two
circles, T2 = S1×S1, we can visualise the motion just de-
scribed as the trajectory on a circle with our x coordinate
corresponding to an angle.

The two lumps continue moving along and, around
t = 69.5, they reverse their motion: The skyrmion at
the upper (lower) half of the grid starts towards increas-
ing (decreasing) x whilst keeping its y coordinate roughly
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Fig. 8. Trajectory plot further illustrating the b = (0, 1) lumps
described in the previous picture, Figure 7. The Skyrme term
introduces forces that make the lumps cruise along the diagonal
and collide head-on (t = 6). The scattering at ninety degrees is
apparent: Around t = 18.5 the skyrmions bump into each other
at the corners (x, y) = (0, 4),(4,0), re-emerging perpendicularly
through (x, y) = (0, 0),(4,4).
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Fig. 9. Pure CP 1 case corresponding to the value b = (0, 1).
The lumps stay still at their initial positions (top-left) as time
elapses. They break down as illustrated at the top-right di-
agram. Below we have the evolution of Emax, including the
Skyrme case.

constant. Now the upper (lower) lump will disappear
through the line x = 4 (x = 0) and re-emerge on the
opposite side x = 0 (x = 4). Figure 12 presents the varia-
tion of the coordinates in time, as well as the evolution of
the peak of the energy density. No splitting was observed
for fields of the type b = (1, 1).
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Fig. 10. Showing the dynamics arising from b = (1, 1).
Although no initial speed is impinged on this system, the
skyrmions move resembling a collision at a certain impact pa-
rameter. One skyrmion moves towards decreasing x whereas
the other skyrmion proceeds in the sense of increasing x. The
disappearance/appearance of the lumps through the edges of
the lattice reflects the periodicity of the network (14).
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Fig. 11. Motion reversal: The skyrmionic structures of
Figure 10 continue their itinerary but, at t = 69.5, their motion
begins to reverse.

Thus, for skyrmions whose initial positions are deter-
mined by b = (α, β) our results indicate that

– splitting only occurs for b = (α, 0), α 6= 0, that is, when
the solitons originally lie on the central cross of the net-
work (14). A repulsive, splitting force acts within each
lump. By using a Skyrme field as an initial condition
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Fig. 12. Above: The evolution of the coordinates of Emax cor-
responding to the event depicted in Figures 10 and 11. Below:
The evolution of Emax itself.

for the O(3) evolution, it is possible to introduce some
attractive forces so that the lumps stick back together.

– Head-on right angle scattering only takes place for b =
(0, β), that is, when the skyrmions initially sit on the
central diagonals of the grid. There is a net attractive
force between the lumps. Now,
– if β 6= 0 then we have two lumps located on a di-

agonal;
– if β = 0 then we have four lumps symmetrically

situated on both main diagonals. In this case, the
scattering becomes a breather-like vibration with
the four lumps moving in towards the centre of the
grid and moving out again. Interestingly, a look
at the property (10) indicates that for b=(0,0) the
soliton W = ℘(z − a) is purely imaginary.

– Neither splitting nor scattering is observed when b =
(α, β), α, β 6= 0. Here we have a configuration of two
energy humps propelled along the lines parallel to the
edges of the cell and, later on, experiencing a 180◦
change in their sense of motion. This looks like scat-
tering at a large impact parameter. We remark that all
systems considered in the present paper start off from
rest.

The right angle scattering is a generic feature of sigma-
type models [12]. In the case of the CP 1 dynamics on
T2 the scattering at 90◦ was theoretically hinted at in [7]
(pure case), where the initial value problem was defined in
terms of the ℘ function (4); the solitons were evolved using
the geodesic approximation. In reference [11] we evolved
the ℘ solitons using a numerical simulation of the full CP 1

model (pure case) and confirmed the 90◦ scattering pre-
dictions of [7]. Earlier on [5], we had observed the said
scattering on T2 (for both the pure and Skyrme cases)
with solitons expressed through the σ function (6). The
present work further establishes these results, with the
added interesting feature that the lumps, in the Skyrme
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Fig. 13. Illustrating the alluring 4-lump, charge-2 state for the
θ1 = 0 case. It is an almost stable configuration. The system
moves out and in along the diagonals oscillating in a breather-
like fashion.

case, collide and scatter off even though they have no ini-
tial speed.

Among other sigma models that exhibit 90◦ scattering
we can mention monopoles [13] and vortices [14].

Finally, it is worth to note from the bottom-left dia-
gram of Figure 1 that the lumps for the b = (0, 0) case
shrink very little, which suggests quite a stable configura-
tion. So we have performed a number of simulations with
b = (0, 0) in the pure O(3) format. Indeed, as Figure 13
shows, the solitons shrink at a very slow rate and can be
regarded as stable for practical purposes. Contrary to the
case of θ1 = 0 processes with no initial speed, a displace-
ment in this four-lump configuration is observed, one of
breather-like characteristics.

5 Concluding remarks

The CP 1 model in (2+1) dimensions has a very rich struc-
ture. On the torus we have uncovered several character-
istics qualitatively different from those seen in the usual
model on the compactified plane. For example in the two
skyrmion sector there exits a configuration featuring four
lumps rather than two. (Clearly, care should now be exer-
cised when referring to the topological charge as the ‘lump
number’.) We also have the interesting fact that no one
soliton solutions exist on T2. The lumps are not stable in
the pure O(3) set-up, but become stable in the Skyrme
model, constructed by the addition of just one extra term
to the O(3) Lagrangian.

Skyrmions on T2 have many other important proper-
ties. For instance, their behaviour depends on the elliptic
function used to define them. Thus, skyrmion fields ex-
pressed in terms of the σ fields, e.g., equation (5), evolve
differently from those expressed through ℘, e.g., equa-
tion (3). In the former case, energy chunks started off from

rest stay still in their initial positions as time goes by. In
the latter case, we have encountered novel phenomena like
lump-splitting, scattering at ninety degrees and motion re-
versal, despite no initial speed being given to the systems.
One of the aims of this research has been to investigate
various properties of solitons on T2 by employing alterna-
tive elliptic functions. Comparison of the various solitons
generated by alternative elliptic functions (and with the
lumps on <2) may help us to gain a deeper insight into
the CP 1 dynamics.

One of our main results is the existence of a mode
of splitting a skyrmion into two lumps (though we have
to work with two skyrmions which then split into four
lumps). There clearly is a potential barrier which, when
overcome, allows the skyrmions to divide up. We have
managed to overcome this barrier by starting our simu-
lations with a Skyrme initial condition which runs up to
a t = t0, when the Skyrme term is switched off: The evo-
lution continues with θ1 = 0. Such an approach adds a
little energy to the system and then transforms it to the
mode responsible for overcoming the barrier. This barrier
is a numerical artifact, brought about by the discretisation
procedure.

The longer the system runs with θ1 6= 0 the more en-
ergy is transferred; hence there seems to be a minimal time
of such a simulation t = t0 below which the skyrmions do
not break up. This we have seen in our simulations – our
estimates of t0 gave us t0 ∼ 1.25.

In the present paper we have also learned that splitting
takes place only when the parameter b in W = ℘ + b
satisfies b ∈ < − {0}. For some values of b we have found
that the forces operating in ℘-lump systems with v0 =
0 either lead to head-on collisions and a subsequent 90◦
scattering or lead to a motion reversal. This property is
qualitatively different to any other CP 1 structures that
we know of.

The table below summaries some of our results:

Im(b)/Re(b) = 0 6= 0

=0 4 lumps on diagonals; 2 lumps on central cross;

breather splitting

6= 0 2 lumps on diagonals; 2 lumps elsewhere

90◦ scattering motion reversal

In future work we hope to report on:
– configurations with v0 6= 0 on the central cross to fur-

ther analise the splitting phenomenon;
– lumps initially situated slightly off the central cross

[b = (α, β), 0 < β � 1];
– lumps slightly off the main diagonals [b = (α, β), 0 <
α� 1];

– obtain deeper insight into motion reversal.
A look a bit farther ahead will necessarily include con-

figurations with higher Brouwer degree, as well as states
defined through other functions, e.g., the elliptic ones of
Jacobi and the pseudo-elliptic theta functions.
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